Connect Columbus MMTP Update
Public Hearing
7.24.19
Project Timeline

2015: Project Start

2016: NEXTGEN

2017: SMRT COLUMBUS, C2P2

2018: Lime

2019: BIRD, CORRIDOR CONCEPTS

Options for Focused Growth and Mobility
A Region of 3 Million by 2050

“We are on track to being the largest metropolitan region in Ohio.”

Population Growth

Additional Residents since 2010
The Daily Commute

4 of every 5 people in the City of Columbus drive alone to work. Nearly 400,000 commute to work every
The Daily Commute

![Bar chart showing the number of employees with different average daily commute times for the years 2013 to 2017. The chart highlights the number of employees with an average daily commute time of 30-34 minutes.]
focused Corridor Regional Scenario
(Corridor Concepts, 2019)

Region-wide Benefits

3x higher Tax Revenues Per Acre

$10 billion less Infrastructure Costs

Corridor-wide Benefits

$8500 less Costs Per Household

29% of trips By Transit, Walking, Biking

30% less Greenhouse Gas Emissions

* These five corridors were analyzed to better understand two development scenarios for large corridor redevelopment in our region.
Connect Columbus Goals

- Mode Choice
- Adaptability
- Neighborhood Vitality
- Health and Safety
- Equitable Access
- Fiscal Sustainability
- Environmental Sustainability
- Economic Development
Beyond Just Moving Traffic

PRIVATE MOTOR VEHICLES
600—1,600/HR

MIXED TRAFFIC WITH FREQUENT BUSES
1,000—2,800/HR

TWO-WAY PROTECTED BIKEWAY
7,500/HR

DEDICATED TRANSIT LANES
4,000—8,000/HR

SIDEWALK
9,000/HR

ON-STREET TRANSITWAY, BUS OR RAIL
10,000—25,000/HR

The capacity of a single 10-foot lane (or equivalent width) by mode at peak conditions with normal operations.
Multiple Objectives

TRAFFIC FLOW

SAFETY IMPROVEMENTS

BALANCING LIMITED RIGHT-OF-WAY

TRAIL ACCESS

TRANSIT SERVICE
Emerging Mobility Trends & Street Uses
Integrating Flexible Services

Flexible
- Personal Bike | Walking | For-Hire Vehicle | Point-to-Point Car Share
- Bike Share | Microcar Share | Scooter Share
- Micro-transit and Delivery

Fixed
- Local Bus | Rapid Bus | Metro or Subway | Light Rail | Regional Rail

Move More People With Fewer Vehicles

- Sidewalk: 9,000/HR
- On-street Bikeway: 1,000/HR
- Mixed Traffic with Frequent Transit: 1,000–2,800/HR
- Private Vehicle Lane: 600–1,600/HR
- On-street Bikeway: 1,000/HR

(assuming 10-foot wide lanes)

1,000 PEOPLE/HR
A Phased Approach

- Multimodal Thoroughfare Plan
- Connect Columbus Transportation Policy Framework

Operating Manuals
- Design Guide – Complete Streets
- TIS/Access Management

- Low Stress/Active Transportation Network
- Code Housekeeping – Multiple Departments
Policy Framework

COORDINATE LAND USE AND TRANSPORTATION

USE TRANSIT AS A CATALYST FOR INFILL DEVELOPMENT (AND VICE VERSA)
Policy Framework

MANAGE TRANSPORTATION SYSTEM DEMAND

LEVERAGE EMERGING TECHNOLOGIES & NEW MOBILITY OPTIONS
Policy Framework

IMPROVE MULTIMODAL CONNECTIVITY

WORK WITH REGIONAL PARTNERS
Policy Framework

BUILD AND MAINTAIN COMPLETE STREETS

EVALUATE FUNDING OPTIONS FOR MULTIMODAL IMPROVEMENTS
Policy Framework

UPDATE RULES & REGULATIONS

THOROUGHFARE PLAN
Defines how much right of way (ROW) is needed and what function it will serve

STREET DESIGN GUIDE
Standards for designing safer, multimodal streets and addressing the resulting tradeoffs

MOBILITY MANAGEMENT GUIDE
Incentives to guide growth into desired locations and mitigate the impacts of growth in other locations

Regulations for the development of private land

THE CITY OF COLUMBUS
ANDREW J. GINTHER, MAYOR
DEPARTMENT OF PUBLIC SERVICE
Columbus Thoroughfare Plan
1993 - Present
Arterial Classifications

TYPE “P” ARTERIAL R/W Varies

A Type “P” Arterial is any arterial street as defined in Chapter 2101 bus City Codes as a “Freeway” or “Expressway.” Such arterials shall have way and pavement widths as determined to be necessary to accommodate needs.

TYPE “6-2D5” ARTERIAL 220’

A Type “6-2D5” Arterial is an arterial street having a minimum right-of-way width of 220 feet wherever possible. Such arterial streets shall wherever be designed to accommodate an 88 foot pavement consisting of six lanes with median divider on mainline sections and parallel service roads.

TYPE “6-2D” ARTERIAL 160’

A Type “6-2D” Arterial is an arterial street having a minimum right width of 160 feet wherever possible. Such arterial streets shall, wherever possible, be designed to accommodate an 80 foot pavement consisting of six lanes with median divider on mainline sections.

TYPE “6-2” ARTERIAL 120’

A Type “6-2” Arterial is an arterial street having a minimum right width of 120 feet wherever possible. Such arterial streets shall, wherever possible, be designed to accommodate a 72 foot pavement consisting of six lanes on mainline sections.

TYPE “4-2DS” ARTERIAL 196’

A Type “4-2DS” Arterial is an arterial street having a minimum right-of-way width of 196 feet wherever possible. Such arterial streets shall, wherever possible, be designed to accommodate a 72 foot pavement consisting of four lanes with median divider on mainline sections and parallel service roads.

TYPE “4-2D” ARTERIAL 120’

A Type “4-2D” Arterial is an arterial street having a minimum right-of-way width of 120 feet wherever possible. Such arterial streets shall, wherever possible, be designed to accommodate a 72 foot pavement consisting of four moving lanes with median divider on mainline sections.

TYPE “4-2” ARTERIAL 100’

A Type “4-2” Arterial is an arterial street having a minimum right-of-way width of 100 feet wherever possible. Such arterial streets shall, wherever possible, be designed to accommodate a 56 foot pavement consisting of four moving lanes on mainline sections.

TYPE “3-1” ARTERIAL 80’

A Type “3-1” Arterial is an arterial street having a minimum right-of-way width of 80 feet wherever possible. Such arterial streets shall, wherever possible, be designed to accommodate a 52 foot pavement consisting of three moving lanes and two parking or additional moving lanes in one direction.

TYPE “2-1” ARTERIAL 60’

A Type “2-1” Arterial is an arterial street having a minimum right-of-way width of 60 feet wherever possible. Such arterial streets shall, wherever possible, be designed to accommodate a 36 foot pavement consisting of two moving lanes and two parking or additional moving lanes in one direction.

TYPE “C” ARTERIAL 60’

A Type “C” Arterial is an arterial street having a minimum right-of-way width of 60 feet wherever possible. Such arterial streets shall, wherever possible, be designed to accommodate a 36 foot pavement consisting of two moving lanes and two parking or additional moving lanes in two directions.
Arterial Classifications

<table>
<thead>
<tr>
<th>Arterial Type</th>
<th>Minimum Right-of-Way</th>
<th>Number of Moving Lanes</th>
<th>Pavement Width</th>
<th>Median Divider</th>
<th>Service Road</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>varies</td>
<td>varies</td>
<td>varies</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>6-2DS</td>
<td>220 ft.</td>
<td>6</td>
<td>88 ft. A,B</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>6-2D</td>
<td>160 ft.</td>
<td>6</td>
<td>88 ft. B</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>6-D</td>
<td>120 ft.</td>
<td>6</td>
<td>72 ft.</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>4-2DS</td>
<td>196 ft.</td>
<td>4</td>
<td>72 ft. A,B</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>4-2D</td>
<td>120 ft.</td>
<td>4</td>
<td>72 ft. B</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>4-2</td>
<td>100 ft.</td>
<td>4</td>
<td>56 ft.</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>3-1</td>
<td>80 ft.</td>
<td>3</td>
<td>52 ft.</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>2-1</td>
<td>60 ft.</td>
<td>2</td>
<td>36 ft.</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>C</td>
<td>60 ft.</td>
<td>2</td>
<td>36 ft.</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

A Includes only arterial pavement. Service road pavements of 24 foot width are normally located approximately 40 feet from outside edge of arterial pavement.

B Includes median divider.
East 161 as a 6-2DS Arterial
Why Update the Thoroughfare Plan?

- Changing travel demands and evolving needs
- Need for multimodal design considerations
- Regular exemptions to R/W dedication
- Zoning overlays and C2P2 encouraging urban form
- Consideration of surrounding development context
- Increasing demand for curbside uses
How the Thoroughfare Plan Works

1. Guide the CIP (R/W Acquisition, Design & Construction)
2. Private Development (R/W Dedication, Traffic Impacts/Improvements, Preservation of R/W for future CIP improvements)

Columbus Thoroughfare Plan R/W Dedication Triggers

<table>
<thead>
<tr>
<th>Rezoning</th>
<th>Council/BZA Variance</th>
<th>Site Plan Review*</th>
<th>Subdivision Plat</th>
<th>Special Permit</th>
</tr>
</thead>
<tbody>
<tr>
<td>✓</td>
<td>✓</td>
<td>-</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* Site Plan Review does not automatically trigger Thoroughfare Plan R/W dedication, but does provide alternate impact study-based mechanism to dedicate R/W for specific improvements
Relationship to Zoning Code and Development Patterns

Setback: Varies by district, generally ½ the designated R/W width of the street as shown on the Thoroughfare Plan.
Land Use & Zoning Context

Urban (Parsons Ave)

Suburban (161)

Urban Commercial Overlays
Urban Constraints
Incremental Improvements
Structure of the Proposed Multimodal Thoroughfare Plan

• Section 1: Redefines Streets for Moving People, not only cars
• Section 2: Corridor Map
• Section 3: Recommends Context-Sensitive Street Planning and Design based on NACTO, AASHTO, and other best practices
• Section 4: Exemptions, with consideration of transit, bike, and pedestrian needs
• Section 5: Establishes Urban and Suburban Corridor Types
• Section 6: Roadway Classification Table
• Section 7: Repeals and replaces 1993 ORD and amendments
Phase 1: Connect Columbus Policy Framework + MMTP

<table>
<thead>
<tr>
<th>Corridor Type</th>
<th>Urban Community Connector - 60’</th>
<th>Urban Community Connector - 80’</th>
<th>Community Connector - 100’</th>
<th>Urban Commuter Corridor - 100’</th>
<th>Suburban Commuter Corridor - 120’</th>
<th>Suburban Commuter Corridor - 160’ - 220’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Champion Avenue</td>
<td>Mount Vernon Avenue</td>
<td>Joyce Avenue at Leonard Avenue</td>
<td>60 – Urban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cherry Bottom Road</td>
<td>Columbus Corp. Limit (south)</td>
<td>Columbus Corp. Limit (north)</td>
<td>100 – Suburban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Civic Center Drive</td>
<td>Rich Street at Second Street</td>
<td>Marconi Boulevard (north of Broad Street)</td>
<td>80 – Urban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleveland Avenue</td>
<td>Broad Street</td>
<td>Westerville Road</td>
<td>100 – Urban Commuter Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleveland Avenue</td>
<td>Westerville Road</td>
<td>Dublin–Granville Road</td>
<td>120 – Suburban Commuter Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleveland Avenue</td>
<td>Dublin–Granville Road</td>
<td>Columbus Corp. Limit</td>
<td>120 – Suburban Commuter Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>College Avenue</td>
<td>Columbus–Lancaster Road</td>
<td>Livingston Avenue</td>
<td>80 – Suburban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(south of Haddon Road)</td>
<td>Schrock Road</td>
<td>80 – Suburban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dublin Corp. Limit</td>
<td>120 – Suburban Commuter Corridor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosgray Road</td>
<td>80 – Suburban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cosgray-Rings Connector</td>
<td>80 – Suburban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Refugee Road</td>
<td>80 – Suburban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Livingston Avenue</td>
<td>80 – Suburban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alkire Road (at I–270)</td>
<td>80 – Suburban Community Connector</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Adaptability + Context + Modal Emphasis

Urban Context Examples

- 80 feet of right-of-way can be arranged in many ways to accommodate different priorities and modes depending on adjacent land use.
- Curb-to-curb space can be reallocated over time to respond to demand.
- The most-dense or highest transit usership corridors may be upgraded with high capacity transit when appropriate.
- Complete streets facilities and multi-modal options emphasized to promote mode choice.
Urban Community Connector
Hudson Street Example

Travel Lane (with sharrows)
5’
Buffer
5’
Lawn (within r/w, steps)
Walk
5’
Travel Lane (with sharrows)
19’
Lawn (within r/w, steps)
60’ R/W

Buffer
5’
Lawn (within r/w, steps)
Walk
5’
Travel Lane (with sharrows)
11’
Lawn (private)
5’
Lawn (private)
5’
Lawn (private)
5’
Lawn (private)
Urban Community Connector
Hudson Street Example

Lawn (private)
- 5’ Lawn (within r/w, steps)
- 5’ Walk
- 5’ Buffer (utilities/green infrastructure)
- 10’ Travel Lane
- 10’ Center Turn Lane
- 60’ R/W

Travel Lane
- 10’ Travel Lane
- 10’ Buffer (tree lawn)
- 5’ SUP

1’ min. offset from SUP
Lawn (private)
Flexibility in Design – Responding to Land Use Changes
Suburban Context
Flexibility in Design – Responding to Land Use Changes
Urban Context
Questions?